Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2302.08796v2

ABSTRACT

A physics-informed neural network (PINN) embedded with the susceptible-infected-removed (SIR) model is devised to understand the temporal evolution dynamics of infectious diseases. Firstly, the effectiveness of this approach is demonstrated on synthetic data as generated from the numerical solution of the susceptible-asymptomatic-infected-recovered-dead (SAIRD) model. Then, the method is applied to COVID-19 data reported for Germany and shows that it can accurately identify and predict virus spread trends. The results indicate that an incomplete physics-informed model can approach more complicated dynamics efficiently. Thus, the present work demonstrates the high potential of using machine learning methods, e.g., PINNs, to study and predict epidemic dynamics in combination with compartmental models.


Subject(s)
COVID-19 , Brain Death , Communicable Diseases
2.
Clinical and Experimental Pharmacology and Physiology ; n/a(n/a), 2021.
Article in English | Wiley | ID: covidwho-1077199

ABSTRACT

Abstract Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffered from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogs including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogs to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.

SELECTION OF CITATIONS
SEARCH DETAIL